Rocket Logo

Welcome to Shadow Shift, the future of AI-powered data solutions.

Login Sign Up

Already have an account? Log in

AI-Powered Data Solutions for the Modern World

Shadow Shift transforms how you work with data. From automating dataset creation to generating privacy-safe synthetic data, our platform accelerates AI development while ensuring compliance and security.

Ready-to-Use Script Collection

Boost your productivity with our curated library of production-ready scripts

Python

DataGen Transformer

Generates huge text datasets of any type.

                        
import torch
import torch.nn as nn

# ---------------------------
# Upgraded Transformer Model
# ---------------------------
class PromptToTextDatasetGeneratorModel(nn.Module):
    def __init__(self,
                 vocab_size,
                 d_model=256,
                 num_encoder_layers=4,
                 num_decoder_layers=4,
                 nhead=8,
                 dim_feedforward=1024,
                 dropout=0.1,
                 max_seq_length=512):
        super().__init__()
        self.d_model = d_model
        self.vocab_size = vocab_size
        self.max_seq_length = max_seq_length

        self.embedding = nn.Embedding(vocab_size, d_model)
        self.pos_embedding = nn.Embedding(max_seq_length, d_model)

        self.transformer = nn.Transformer(d_model=d_model,
                                          nhead=nhead,
                                          num_encoder_layers=num_encoder_layers,
                                          num_decoder_layers=num_decoder_layers,
                                          dim_feedforward=dim_feedforward,
                                          dropout=dropout)

        self.fc_out = nn.Linear(d_model, vocab_size)

    def forward(self, src, tgt):
        seq_len_src, batch_size = src.size()
        seq_len_tgt, _ = tgt.size()

        src_pos = torch.arange(0, seq_len_src, device=src.device).unsqueeze(1).expand(seq_len_src, batch_size)
        tgt_pos = torch.arange(0, seq_len_tgt, device=tgt.device).unsqueeze(1).expand(seq_len_tgt, batch_size)

        src_emb = self.embedding(src) * (self.d_model ** 0.5) + self.pos_embedding(src_pos)
        tgt_emb = self.embedding(tgt) * (self.d_model ** 0.5) + self.pos_embedding(tgt_pos)

        output = self.transformer(src_emb, tgt_emb)
        return self.fc_out(output)

# ---------------------------
# Dummy Tokenizer with Domain & Format Awareness
# ---------------------------
class DummyTokenizer:
    def __init__(self, vocab_size=10000):
        self.vocab_size = vocab_size

    def encode(self, text, max_length=50):
        torch.manual_seed(len(text))  # For reproducibility
        tokens = torch.randint(10, self.vocab_size, (max_length,))
        return tokens

    def vocab_size(self):
        return self.vocab_size

# ---------------------------
# Dummy Test - with prompt parsing
# ---------------------------
def dummy_test():
    vocab_size = 10000
    model = PromptToTextDatasetGeneratorModel(vocab_size=vocab_size)

    tokenizer = DummyTokenizer(vocab_size)

    # ๐Ÿงช Prompt including domain and format
    prompt = "Generate a 100K-row medical dataset in CSV format with age, gender, bp, cholesterol."
    response_format = "CSV"
    domain = "Medical"

    # Here you can later add a "prompt parser" module to extract rows, domain, format etc.
    print("๐Ÿงช Parsed Format:", response_format)
    print("๐Ÿง  Parsed Domain:", domain)

    src_tokens = tokenizer.encode(prompt, max_length=50)
    tgt_tokens = tokenizer.encode("age,gender,bp,...", max_length=60)

    src = src_tokens.unsqueeze(1)  # (src_seq_len, batch_size)
    tgt = tgt_tokens.unsqueeze(1)  # (tgt_seq_len, batch_size)

    logits = model(src, tgt)
    print("โœ… Logits shape:", logits.shape)  # Expected: (tgt_seq_len, batch_size, vocab_size)

dummy_test()                        
                    
Python

Web Image Scraper (Face Focused)

Scrapes web for face images.

                        
# ================== SETUP ==================
!pip install aiohttp aiofiles duckduckgo-search beautifulsoup4 tqdm imagehash opencv-python-headless pyppeteer nest_asyncio

# ================== IMPORTS ==================
import os, cv2, aiohttp, asyncio, aiofiles, random, imagehash, zipfile
from PIL import Image
from tqdm import tqdm
from bs4 import BeautifulSoup
from duckduckgo_search import ddg
from pyppeteer import launch
import nest_asyncio
from IPython.display import FileLink

nest_asyncio.apply()

# ================== CONFIG ==================
KEYWORDS = ["celebrity face", "portrait photo", "actor face", "famous people closeup"]
MAX_RESULTS_PER_KEYWORD = 500
TARGET_IMAGE_COUNT = 100_000
DOWNLOAD_FOLDER = "ScrapedImages"
ZIP_FILENAME = "FaceDataset.zip"
CONCURRENT_TASKS = 100

PROXIES = []  # Add your proxy API pool here
USER_AGENTS = [
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64)",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)",
    "Mozilla/5.0 (X11; Linux x86_64)",
]

os.makedirs(DOWNLOAD_FOLDER, exist_ok=True)
image_hashes = set()
image_count = 0
semaphore = asyncio.Semaphore(CONCURRENT_TASKS)

# ================== UTILS ==================
def get_headers():
    return {"User-Agent": random.choice(USER_AGENTS)}

def get_proxy():
    return random.choice(PROXIES) if PROXIES else None

def contains_face(image_path):
    try:
        img = cv2.imread(image_path)
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
        faces = face_cascade.detectMultiScale(gray, 1.1, 4)
        return len(faces) > 0
    except:
        return False

def is_duplicate(img_path):
    try:
        img = Image.open(img_path).convert("RGB")
        h = str(imagehash.phash(img))
        if h in image_hashes:
            return True
        image_hashes.add(h)
        return False
    except:
        return True

async def fetch_html_puppeteer(url):
    try:
        browser = await launch(headless=True, args=["--no-sandbox"])
        page = await browser.newPage()
        await page.setUserAgent(random.choice(USER_AGENTS))
        await page.goto(url, timeout=30000)
        content = await page.content()
        await browser.close()
        return content
    except:
        return None

def extract_image_links(html, base_url):
    try:
        soup = BeautifulSoup(html, "html.parser")
        images = []
        for img in soup.find_all("img"):
            src = img.get("src")
            if src and src.startswith("http"):
                images.append(src)
            elif src and src.startswith("/"):
                images.append(base_url + src)
        return images
    except:
        return []

async def download_and_filter_image(session, url, index, sub_index):
    global image_count
    filename = os.path.join(DOWNLOAD_FOLDER, f"{index}_{sub_index}.jpg")
    try:
        async with semaphore:
            async with session.get(url, headers=get_headers(), proxy=get_proxy(), timeout=10) as resp:
                if resp.status == 200:
                    f = await aiofiles.open(filename, "wb")
                    await f.write(await resp.read())
                    await f.close()
                    if contains_face(filename) and not is_duplicate(filename):
                        image_count += 1
                    else:
                        os.remove(filename)
    except:
        if os.path.exists(filename):
            os.remove(filename)

async def scrape_and_download(session, url, index):
    if image_count >= TARGET_IMAGE_COUNT:
        return
    html = await fetch_html_puppeteer(url)
    if not html:
        return
    base_url = "/".join(url.split("/")[:3])
    image_links = extract_image_links(html, base_url)
    tasks = [
        download_and_filter_image(session, img_url, index, i)
        for i, img_url in enumerate(image_links)
        if image_count < TARGET_IMAGE_COUNT
    ]
    await asyncio.gather(*tasks)

async def main():
    global image_count
    print("[*] Collecting DuckDuckGo URLs...")
    results = []
    for keyword in KEYWORDS:
        results += ddg(keyword, max_results=MAX_RESULTS_PER_KEYWORD)
    urls = [res["href"] for res in results]
    print(f"[*] Scraping from {len(urls)} pages...")

    async with aiohttp.ClientSession() as session:
        for idx, url in enumerate(tqdm(urls)):
            if image_count >= TARGET_IMAGE_COUNT:
                break
            await scrape_and_download(session, url, idx)

    print(f"\nโœ… Downloaded {image_count} face images.")
    print("[*] Zipping dataset...")
    with zipfile.ZipFile(ZIP_FILENAME, 'w') as zipf:
        for root, _, files in os.walk(DOWNLOAD_FOLDER):
            for file in files:
                zipf.write(os.path.join(root, file))

    print("โœ… Dataset ready.")
    display(FileLink(ZIP_FILENAME))

await main()                        
                    
Python

Synthetic Patient Data Generator

Creates realistic patient datasets.

                        
import random
import pandas as pd
from datetime import datetime, timedelta

# ================== CONFIG ==================
NUM_ROWS = 10_000
GENDERS = ["Male", "Female", "Other"]

def generate_random_date():
    start_date = datetime.strptime('2000-01-01', '%Y-%m-%d')
    end_date = datetime.today()
    delta = end_date - start_date
    random_days = random.randint(0, delta.days)
    return (start_date + timedelta(days=random_days)).strftime('%Y-%m-%d')

def generate_patient_data(index):
    age = random.randint(18, 90)
    gender = random.choice(GENDERS)

    # Blood pressure: systolic/diastolic based on age
    if age < 40:
        systolic = random.randint(100, 130)
        diastolic = random.randint(60, 85)
    elif age < 60:
        systolic = random.randint(110, 145)
        diastolic = random.randint(70, 90)
    else:
        systolic = random.randint(120, 160)
        diastolic = random.randint(75, 95)

    # Cholesterol (mg/dL)
    cholesterol = random.randint(150, 280)

    return {
        "PatientID": f"P{100000 + index}",
        "Age": age,
        "Gender": gender,
        "SystolicBP": systolic,
        "DiastolicBP": diastolic,
        "Cholesterol": cholesterol,
        "CheckupDate": generate_random_date()
    }

# ================== GENERATE ==================
data = [generate_patient_data(i) for i in range(NUM_ROWS)]
df = pd.DataFrame(data)

# ================== SAVE ==================
df.to_csv("patient_data.csv", index=False)
print("โœ… Dataset created as 'patient_data.csv'")
df.head()                        
                    

Coming soon

Synthetic datasets generator Create realistic, private synthetic datasets

Input Your Requirements

Sample Output

Your generated synthetic data will appear here...

Synthetic Data Platform

On-demand, customizable synthetic data for AI training with privacy guarantees

Healthcare

Healthcare

Generate synthetic patient data for medical AI without privacy risks

Finance

Finance

Create realistic transaction data for fraud detection systems

Retail

Retail

Simulate customer behavior for demand forecasting and inventory optimization

Manufacturing

Manufacturing

Generate synthetic sensor data for predictive maintenance models

Autonomous Vehicles

Autonomous Vehicles

Simulate rare driving scenarios for safer AI training

Custom

Custom Solutions

Tailored synthetic data for your specific industry and use case

Why Synthetic Data?

What is synthetic data and why should I use it?
Synthetic data is artificially generated data that mimics real data statistically but contains no real personal information. It's perfect for training AI models when real data is scarce, sensitive, or would be expensive to collect. Our synthetic data maintains the same statistical properties as real data for your use case.

Customizable & Scalable

How customizable is the data?
Define the exact parameters you need โ€“ distributions, relationships between variables, and even edge cases. Whether you're testing extreme scenarios or normal operations, generate as much data as your models require, instantly.

Privacy Guaranteed

How does the AI handle sensitive data?
For real data processing, all data is encrypted in transit and at rest. Our AI processes data without human intervention, and you can request data deletion at any time. For synthetic data, no real personal information is ever used โ€“ we generate entirely new data based on statistical patterns.
Learn More About Synthetic Data

How It Works

Create perfect datasets in just 3 simple steps

1

Define Requirements

Tell us what data you need through our simple interface or API

Requirements
2

AI Processes Data

Our system automatically collects, generates, cleans, and structures your data

AI Processing
3

Download & Use

Get your dataset in multiple formats, ready for analysis

Download

Why Choose Shadow Shift?

Fast

โšก Ultra-Fast Data Solutions

Generate real or synthetic datasets in minutes, not days. Our optimized pipelines deliver results at lightning speed.

AI

๐Ÿ”’ Privacy-First Approach

Our synthetic data platform eliminates privacy concerns while maintaining data utility for AI training.

Scripts

๐Ÿ› ๏ธ Ready-to-Use Solutions

From scripts to synthetic data generation, we provide production-ready solutions for your projects.

Formats

๐Ÿญ Industry-Specific Solutions

Custom solutions for any industry with domain-specific data generation.

Trusted by Data Teams Worldwide

Join thousands of professionals who rely on Shadow Shift

User

Sarah Johnson

Data Scientist, TechCorp

"Shadow Shift's synthetic data platform allowed us to train our medical AI models without compromising patient privacy. The data quality was indistinguishable from real data for our use case."

User

Michael Chen

ML Engineer, StartupX

"The combination of real data automation and synthetic data generation has cut our development cycles in half. We can now test scenarios we could never collect real data for."

GDPR GDPR Compliant
SSL 256-bit Encryption
SOC2 SOC2 Certified

Access Fastest Data Scripts at Your Fingertips

Choose a plan that fits your dataset building speed.

Free

โ‚น0

  • โœ… Access to essential scripts
  • โœ… Limited categories (Web, PDF, CSV)
  • โœ… Script copy/download
  • โŒ No AI-powered tools
  • โŒ No saved collections

Frequently Asked Questions

Get answers to common questions about Shadow Shift

What is synthetic data and why should I use it?
Synthetic data is artificially generated data that mimics real data statistically but contains no real personal information. It's perfect for training AI models when real data is scarce, sensitive, or would be expensive to collect. Our synthetic data maintains the same statistical properties as real data for your use case.
How does the synthetic data generation work?
Our platform uses advanced generative AI models trained to produce realistic data based on your specifications. You define the parameters (distributions, relationships between variables, etc.) and our system generates statistically valid synthetic data that preserves the patterns of real data without containing any actual personal information.
Is there really a free plan?
Yes! Our Starter plan is completely free forever with 5 datasets and 1,000 synthetic records per month. No credit card required.
How does the AI handle sensitive data?
For real data processing, all data is encrypted in transit and at rest. Our AI processes data without human intervention, and you can request data deletion at any time. For synthetic data, no real personal information is ever used - we generate entirely new data based on statistical patterns.
What industries benefit most from synthetic data?
Healthcare (patient data), finance (transaction data), autonomous vehicles (rare scenario data), retail (customer behavior), manufacturing (sensor data), and any industry with privacy constraints or data scarcity benefit greatly. Synthetic data allows development and testing without legal or ethical concerns.

Ready to Transform Your Data Workflow?

Join thousands of data professionals who save hours every week with Shadow Shift's data automation and synthetic data solutions.

<<<<<<< HEAD >>>>>> fe805aff17f762e8f178dce1129665af797d15c8